ClickHouse is powerful for anomaly detection when paired with machine learning. With Spring Boot, you can train models, store data, and detect outliers.
1. Store Data in ClickHouse
Design a table for storing metrics:
CREATE TABLE metrics (
id UUID DEFAULT generateUUIDv4(),
source String,
value Float64,
timestamp DateTime DEFAULT now()
) ENGINE = MergeTree()
ORDER BY timestamp;
This table holds time-series data for anomaly detection.
2. Fetch Data into Spring Boot
Use
JdbcTemplate or JPA to load data for training:
List<Double> values = jdbcTemplate.queryForList(
"SELECT value FROM metrics WHERE timestamp > now() - INTERVAL 1 DAY",
Double.class
);
3. Apply a Simple Machine Learning Model
For basic anomaly detection, use Z-score:
double mean = values.stream().mapToDouble(v -> v).average().orElse(0);
double stdDev = Math.sqrt(values.stream()
.mapToDouble(v -> Math.pow(v - mean, 2)).sum() / values.size());
values.forEach(v -> {
if (Math.abs((v - mean) / stdDev) > 3) {
System.out.println("Anomaly detected: " + v);
}
});
This flags values that deviate significantly from the norm.
4. Automate with Spring Boot Scheduler
Schedule anomaly checks:
@Scheduled(fixedRate = 60000)
public void detectAnomalies() {
// Fetch values and run detection logic
}
5. Extend with External ML Libraries
Integrate
TensorFlow Java or
Smile for more advanced anomaly detection models like Isolation Forest or Autoencoders.
6. Alerting and Action
Use Spring Boot’s notification system to log, alert, or trigger actions when anomalies are detected.
image quote pre code